Augmented Reality – Part 7 – Contraindications, Limitations and Future Implications

CONTRAINDICATIONS AND LIMITATIONS OF AUGMENTED REALITY USE IN THE CLASSROOM 

There are a few issues with implementing innovative teaching practices such as AR into classrooms.  These reasons include misconceptions with using ICT in the classroom, teacher reluctance and insufficient access to technology and the internet.

  1. MISCONCEPTIONS ABOUT ICT IN THE CLASSROOM – There is a significant disinclination from some educators about the inclusion of digital technology into classroom practice.  This reluctance can stem from a belief that technology causes students to become passive in their learning and that encouraging the use of personal devices increases class distractions (Wu et al., 2013).  Saidin, Abd Hali & Yahaya (2015, p.1) disagree vehemently and argue that AR actually causes the learner to become more interactive with the learning content as it requires the student to think critically and be able to make meaning from their interactions.  Wu et al. (2017) suggests that the use of mobile phones promotes social interactivity and student collaboration when using through networked devices.  
  2. TEACHER RELUCTANCE – Many teachers are not comfortable with emerging technologies due to their own lack of knowledge with the medium (Pope, 2018a).  Wolz (2019, p.6) points out that teachers, like students, develop self efficacy from their own ability, observing others and verbal affirmation.  Self efficacy of teachers and educators is essential, as there is a strong correlation between teacher competence and inclusion of digital technologies in the classroom  (Wolz, 2019).  Saidin, Abd Hali & Yahaya (2015, p.1) argue that all teachers should be required to continuously keep abreast of new products as part of professional learning and development.   Unfortunately, requiring all teachers to be familiar and confident with emerging technologies is simply unfeasible.  Many teachers are already overworked and overwhelmed with their current workloads.  Therefore, it is more viable that each school has dedicated ICT teachers, or teacher librarians, that are tasked with embedding emerging technologies into classroom practice.  This method allows both classroom teachers and students to improve their digital literacy skills and develop ICT acuity concurrently.  For schools with a library, it makes sense to ensure the TL has self efficacy with AR/VR technology as most AR installations are sourced in their teaching and learning spaces.    
  3. DIGITAL DIVIDE – This is a significant hurdle to the implementation of digital technologies such as AR in Australian classrooms.  The high cost of technology has inhibited its diffusion across classrooms, but the recent rapid advancements and price has reduced this barrier significantly (Wolz, 2019, p.2).  It is not common for all students and schools to possess mobile devices and or have available data to have transactions with AR.  This issue is more common in rural areas and within lower socio-economic families and schools (DIIS, 2016).   The extent of the digital divide has been highlighted and under scrutiny by the recent COVID 19 school closures, where the lack of internet and device access caused many students to be unable to access home learning.  

 

IMPLICATIONS FOR THE FUTURE

Oddone (2019) and Zak (2014) suggest that VR and AR will become mainstream technology soon and it behooves educators to equip students with the necessary skills to maintain their digital literacy.  Previously access to these technologies was extremely expensive and many schools were unable to gain access due to lack of funds. However,  rapid changes in technology have led to a significant price reduction, but even with the decreased costs, AR installations are still out of reach for many schools.  For schools and educational institutions that can afford these emerging technologies, there are educators that lack confidence in their ability to use AR, and there are others that find the available AR content is not suited to the needs of their students (Wu et al., 2013, p.46).  Whilst centralising emerging technologies into the library addresses the lack of self efficacy of teachers, it does not solve the issue of unsuitable AR content.   

Hannah et al., (2019) proposes that schools create their own 3D content objects that suit their students and align to the curriculum as needed.  As part of this approach, images are curated and integrated into the library management system that shares knowledge and collaboration.  This method allows all the images that are created in the school by both staff and students to be stored for future use whilst acknowledging the authorship and intellectual property ownership of the images.  This proposition is an extension of Zak (2014) idea of using AR in information seeking as mentioned previously.   Whilst collection management is part of a librarian’s repertoire, the curation of 3D images requires new vocabulary and ontology, and requires further exploration of the relevant literature.  Therefore, it makes logical sense that AR installations and its other forms of hardware and software are centralised in the library and the teacher librarian tasked with cataloging the 3D images, embedding AR and other emerging technologies across the curriculum.  

Augmented Reality in the Classroom – Part 6 – Role of the TL

Bit of a hiatus since the last post… I decided to go on holidays.

 

ROLE OF TEACHER LIBRARIAN

The library and the teacher librarian hold a central position in the school learning and teaching dynamic and thus are ideally positioned to engage in collaborative planning and teaching across the curriculum.  Like libraries, the role of the teacher librarian has evolved in response to the metamorphosis of repository spaces to information gateways.  ASLA (2016) clearly defines the foci of a modern teacher librarian to; learning and teaching, resourcing the curriculum, management of the library and its resources, providing leadership, collaborating with their peers and engaging with the school community.  

Even though libraries and the role of the teacher librarian has evolved, their main purview in a school has not changed.  Information seeking is the core of each school library, and the main point of the teacher in teacher librarian is  information literacy and the explicit teaching of ICT (ALIA & ASLA, 2004).  This teaching role extends to both staff and students, as teacher librarians are required to model good practice, and explicitly teach information seeking behaviour and information literacy to everyone in the school community (ALIA & ASLA, 2004; ALIA, 2014).  

All teachers in Australia are required to integrate technology into their teaching and learning, but many classroom educators are unaware of the benefits of emerging technologies such as AR and VR (AITSL, 2017).  Consequently, the task of educating staff about emerging technologies falls onto the teacher librarian.  This is because teacher librarians are required by ALIA & ASLA (2014), ALIA (2014) and ASLA (2014) to be familiar with emerging technologies, provide access to and integrate them into library practice, programs as well as support the school community in using them effectively.  

There are many traditional ways of introducing these technologies, such as staff emails or meetings, but there are innovative ways of introducing emerging technologies to the school community.  Townsdin & Whitmer (2017) suggested AR embedded library marketing as an effective way of promoting the library and its services whilst improving information literacy, whereas Wolz (2019) points out that using AR in information seeking covertly introduces colleagues to the technology whilst they overtly search the catalogue.  Pope (2018a) proposes that AR can be introduced through team building exercises, and Zak (2014) suggests the use of AR embedded resources as an effective method of introducing AR into classroom practice.   

Whilst all those listed are valid methods of introducing the school community to new technologies, the most effective manner is by using AR embedded classroom resources.  By using emerging technologies in teaching resources, students and staff are gaining access to high quality information that meets curriculum needs and student development.  The secondary and almost furtive asset is that students gain access to these new technologies and are given opportunities to experiment in a low stakes environment.  This tactic also gives classroom teachers an opportunity to experiment and play with the technology themselves, so that they can effectively use them in their classrooms (Zak, 2014).   From a library management position, teacher librarians are required to regularly evaluate their strategies and services to ensure that it meets the needs of their community, and this extends to AR programming and resourcing  (Zak, 2014).  This evaluation must also broaden to include any mobile applications, 3D image repository or hardware that the library choses to maintain as part of their collection and digital technologies program (Zak, 2014). 

Augmented Reality in a school library – Part 5.

So far I have covered ways in which emerging technologies such as AR can be incorporated into the classroom.  This next section is about this technology can be used in school libraries as part of resource management, pedagogical practices and collaborative learning.

ROLE OF THE LIBRARY

School libraries and teacher librarians play a pivotal role in technology access.  School libraries have long been known for providing equitable access for information (ALIA, 2014).  The digital revolution has changed the primary purpose of libraries from information repositories to being gateways to knowledge.  This is because a library collection is no longer limited to print texts but now extends to including ebooks, digital resources,online databases and emerging technologies.  Consequently, by extending this access to emerging technologies like AR and VR, school libraries are building the value of their resources and concurrently, reducing the impact of the digital divide on their students (DIIS, 2016).  There are several ways in which a library can introduce emerging technologies such as AR to their patrons.  These include:

 

  1. AR EMBEDDED TEXTS – These resources are also the most cost efficient method of introducing AR technology to students,  as it enables them to experience the technology but without the associated costs of setting up hardware and software (Brigham, 2017; Foote, 2018).  Magana, Serrano & Rebello (2018, p. 526) cite clearly there is an increased student understanding when multimodal resources such as AR embedded information texts are used when compared to traditional texts. The reason why AR technology has increased efficacy in informational resources is that haptic feedback is non verbal and students focus on that as the primary source of information and the text provides the support (Magana, Serrano & Rebello, 2018).  This method is currently in place in most schools and academic libraries and some libraries offer a smart device loan scheme as well to assist with AR resources for offsite learning.
  2. MAKERSPACES – Makerspaces convert students from users of content to creators of knowledge as they allow students to pursue individual projects in and out of class time,  as well as facilitate independent and cross disciplinary learning (Slatter & Howard, 2013).  Many libraries have designated makerspace areas to facilitate creativity and critical learning and free play.  Pope (2018a) points out that free play should be encouraged as it allows users of all ages to learn through experimentation, even if the original point was educational or recreational in purpose.  These areas also allow teachers to experiment with new technology for their own personal benefit or to embed into their teaching practice (Slatter & Howard, 2013).
  3. AR INSTALLATIONS – An extension of makerspaces are AR installations.  These areas, known as sandbox programming, are permanently devoted to experimentation, exploration and demonstrations of AR/VR technology  (Townsdin & Whitmer, 2017).  Some examples of AR installations are TinkerLamp and zSpace. TinkerLamp was the forerunner of AR technology and required a screen, a projector, experimentation board and an interferometer (Furio et al., 2017, p.3).  Whereas the more modern zSpace consists of a computer, stylus and specialised glasses (Foote, 2018).                                                                                                                 Foote (2018) correctly points out that it is not cost effective to implement AR technology into every classroom, and that AR elements are best served through shared spaces such as the library.  But even then, these installations are not common in schools as Merge cubes, as they are very expensive and the latter is cheaper and more flexible for group use (Pope, 2018a).  
  4. LIBRARY OUTREACH AND MARKETING – Library tours, displays and other promotional programs have an immense capability for AR.  AR embedded posters and displays are an innovative method to engage students, and can convey useful information about seasonal events, special collection, library skills and services (Townsdin & Whitmer, 2017).  It is also possible to gamify library maps with embedded GPS tagging as a method of incentivising students to explore the various library spaces and facilities (Balci, 2017; Townsdin & Whitmer, 2017).  Besides being innovative, the use of mobile applications facilitates the collection of user data.  Library staff are able to analyse this data and use it to appraise student engagement, as well as illustrate the library’s effectiveness in adapting to advancements in technology (Townsdin & Whitmer, 2017). 
  5. INFORMATION SEEKING BEHAVIOUR –  There is scope for libraries to implement AR as part of their learning management system, the delivery of information and the provision of data (Zak, 2014).  The modern student has a preference for technology based practices and this extends to information seeking (Wolz, 2019). Zak (2014) suggests that by using emerging technologies as part of information seeking, libraries are speaking the same language as their clientele.

 

REFERENCES:

Australian Library and Information Association. (2014). Future of the Library and Information Science Profession. ALIA Futures. Retrieved from https://www.alia.org.au/sites/default/files/documents/advocacy/ALIA-Future-of-the-Profession-ALL.pdf

Balci, L. (2017). Using augmented reality to engage students in the library. Information Today Europe [Blog]. Retrieved from https://www.infotoday.eu/Articles/Editorial/Featured-Articles/Using-Augmented-Reality-to-engage-students-in-the-library-121763.aspx

Brigham, T. (2017). Reality check: Basics of augmented, virtual, and mixed reality. Medical Reference Services Quarterly (36) 2. Pp 171-178. DOI: 10.1080/02763869.2017.1293987

Department of Industry, Innovation and Science (2016). Australia’s digital economy update. Retrieved from https://apo.org.au/sites/default/files/resource-files/2016/05/apo-nid66202-1210631.pdf

Foote, C. (2018).  Is it real or is it VR? Exploring AR and VR tools. Computers in Libraries. Retrieved from http://web.b.ebscohost.com.ezproxy.csu.edu.au/ehost/pdfviewer/pdfviewer?vid=0&sid=6093ea4d-06fa-42b1-8400-75e5bd1dd875%40pdc-v-sessmgr03

Furio, D., Fleck, S., Bousquet, B., Guillet, JP., Canioni, L., & Hachet, M. (2017). HOBIT: Hybrid optical bench for innovative teaching. CHI’17 – Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Retrieved from https://hal.inria.fr/hal-01455510/file/HOBIT_CHI2017_authors.pdf

Magana, A., Serrano, M., & Rebello, N. (2018). A sequenced multimodal learning approach to support students’ development of conceptual learning. Journal of Computer Assisted Learning, 35 (4). DOI https://doi-org.ezproxy.csu.edu.au/10.1111/jcal.12356

Pope, H. (2018a). Virtual and augmented reality in libraries. Library Technology Reports – American Library Association, (54)6.

Slatter, D., & Howard, D. (2013). A place ot make, hack and learn: makerspaces in Australian public libraries. Journal of the Australian Library and Information Association, 62(4), pp.272-284. Retrieved from https://eprints.qut.edu.au/73071/1/73071.pdf

Townsdin, S., & Whitmer, W. (2017). Technology. Public Services Quarterly. 13. Pp190-199. DOI: 10.1080/15228959.2017.1338541

Wolz, K. (2019). Building faculty competence and self efficacy for using ZSpace virtual reality (VR) software in the classroom. All Regis University Theses. Retrieved from https://epublications.regis.edu/cgi/viewcontent.cgi?article=1930&context=theses

Zak, E. (2014). Do you believe in magic? Exploring the conceptualisation of augmented reality and its implication for the user in the field of library and information science.  Information Technology and Libraries.

Augmented Reality in the Classroom – Part 4

Continuing with the series….

More ways in which AR can be applied in a school dynamic. 

6. NUMERACY

Numeracy skills can be enhanced using AR.  Wu et al. (2013) suggest that students can learn geometry, trigonometry, spatial relationships and collaborative problem based learning by using AR to supplement their learning.  Technologies such as the combination of TinkerLamp and Kaleidoscope are popular in Europe and can be used to explore symmetries and congruence.  Whereas the mobile application – AR Measure kit is useful in measuring distances, trajectories, angles, height and estimating volume  (Cuendet, Bonnard, Do-Lenh & Dillenbourg, 2013).  

7. SUPPORT LITERARY ARTS

Hannah et al. (2019) cited several methods in which AR can support the literary arts curriculum.  Students are able to create or visit real or fictional sites using the digital interfaces such as Merge cubeso that connections between the content and the real world can be made.  For example, Shakespeare comes alive with a tour of Verona, Japanese medieval history can be taught by analysing the structure of Kokura Castle, and students can investigate the structure of a steam engine, all with a single mobile app, a smartphone or tablet and a Merge cube.  

8. VISUAL ARTS

A very interesting use of AR is the ability to access and engage in an authentic exploration of real objects in an artificial space (Wu et al. 2013).  Many art galleries and museums around the world already have embedded AR to allow users access to additional information about the display, for example, some places use QR codes to inform the user of additional information about the artist or exhibit (Coates, 2020).  From a classroom perspective, students can support their own creative pieces by embedding their rationale using Thinglink, Padlet or Metaverse, and use QR codes on their paintings, sculptures, photographs or collages to link it to their rationale (Zak, 2014) .  

9. LOCATION BASED LEARNING

Wu et al., (2013) suggests that location based learning, such as field trips and excursions, can be augmented by the use of AR.  As previously mentioned, many museums, galleries and other institutions have already adopted the use of AR in their spaces (Coates, 2020; Townsdin & Whitmer, 2017).   Some of them use the technology to provide additional information to the user about the collection, whereas other places use AR in their maps or tours  (Townsdin & Whitmer, 2017).  By including relevant information within the augmented space, it encourages more authentic learning, which in turn improves student engagement and learning outcomes (Wu et al., 2013). 

Emerging technologies have also been adopted by some council reserves and state national parks as a means to inform users about local flora and fauna.  Visitors are able to use their devices and their inbuilt GPS systems to access pertinent information about the site they are accessing (Townsdin & Whitmer, 2017).  Some sites also offer remote access and this can be very useful for excursion preparation or for revision purposes.  Remote access would also be of great assistance when students are unable to attend excursions or field trips due to illness or pandemics. 

10. ASSISTING STUDENTS WITH DIVERSE LEARNING NEEDS

Technology has often been cited as an effective intervention method for students with autism spectrum disorder (ASD) and educators seek methods in which to meet cognitive, behavioural and developmental needs (Sahin, Keshav, Salisbury & Vahabzadeh, 2018).  Digital methods are often favoured  for ASD students, as they tend to have a preference for electronic media due to their predilection as visual learners (Mahayuddin & Mamat, 2019, p.2176-2177).  Additionally AR offers them an environment that supports the tangible manipulation of abstract ideals, as well as a visual image of the learning content, and standardised and predictable outcomes as routine and predictability is very important to students with ASD (Mahayuddin & Mamat, 2019, p.2176-2177; Sahin et al., 2018, p.1).   

AR and VR are also able to assist ASD students in developing their socio-emotional skills.  This technology allows students to experience the world and its environmental hazards as well as engage and interact with their peers in a socially controlled environment (Sahin et al., 2018, p.2; Riva, Banos, Botella, Mantovani & Gaggioli; 2016).   Whilst tablets and smartphones can be used, Sahin et al. (2018) suggests the use of SmartGlasses as they can be preloaded with social and behavioural coaching software.  Another benefit is that AR experiences can be tailored and adapted to suit student’s diverse needs, which is important as many experience high levels of anxiety when there is disruption to their learning plan.  

 

Augmented Reality in the Classroom – Part 3

Continuing on the series….

Here are few ways in which AR can be applied in a school dynamic.

  1. STUDENT ENGAGEMENT 

Technology has often been cited as a tool to increase student engagement.  Bonascio (2017) and  Magana, Serrano & Rebello (2019) theorise that AR is able to prolong attention and focus, as when multimodal resources and haptic devices are used, higher levels of enjoyment are experienced.  This gratification is significantly reduced in students that do not comprehend the mechanics of the technology and indicated that whilst utilising AR can improve digital literacy, explicit teaching is required to ensure that all students are able to interact successfully with the technology (Magana, Serrano & Rebello, 2019). 

               2. INQUIRY LEARNING

Oddone (2019) and Foote (2018) both suggest that greater educational benefits arise from students creating their own interactive images and overlays rather than using supplied ones.  Apps such as Metaverse or Augment can be used by students to construct their own interactive content and would be an ideal cross curricular inquiry task across any discipline, but have curriculum value within the Science, History and Geography inquiry skills section. Examples of inquiry tasks include:

 

 

 

 

 

 

 

3. ABSTRACT CONCEPTS & STEM SUBJECTS

Magana, Serrano & Rebello (2018, p.526) believe that there is a positive effect to using multimodal resources and active learning for science and its related fields. This is because students often need assistance with visualising complex and abstract concepts (Saidin, Abd Hali & Yahaya, 2015; Riva, Banos, Botella, Mantovani & Gaggioli, 2016).  Abstract concepts can be problematic for many students because of the difficulty students can have in visualising theoretical postulations (Furio, Fleck, Bousquet, Guillet, Canioni & Hachet, 2017, p.2-3 ).  This struggle can negatively influence a student’s perception of the content material and lead to adverse learning outcomes (Furio et al., 2017, p.2-3 ).   AR technology allows students to visualise the concept, albeit in animation, and increase comprehension which leads to improved outcomes  (Saidin, Abd Hali & Yahaya, 2015, Wu et al., 2013).  This is because haptic devices allow students to manipulate and utilise their sensory faculties when they are constructing knowledge. Large and small phenomena, as well as anatomical figures, can be visualised using AR technology (Wu et al. 2013). 

 

High school curriculum linked examples include:

 

 

 

 

 

 

 

4. READING – RECREATIONAL & INFORMATIONAL

AR books is the largest growing trend in children’s publishing and that many publishers are supplementing traditional texts with AR embedded resources (Levski, 2018; Zak, 2014). This is because AR books are seen as more innovative and able to improve flagging reading rates in children and adolescents (Levski ,2018, Zak, 2014).  Many young readers find the interactivity extremely engaging and the use of technology appeals to digital natives (Magana, Serrano & Rebello, 2019).

5. LITERACY

Mayahayuddin & Mamat, (2019) point out that the multimodal nature of AR improves literacy because the audio visual cues assist students in decoding.   Additionally,  AR enables students that have low focus or attention to enhance their learning as it grants access  to language in both formal and informal contexts, which is very useful for students with ADD, ADHD and those with social anxiety (Rafiq & Hashim, 2018, p.31; Mayayuddin & Mamat, 2019.  These benefits are further improved when AR is combined with gaming principles which provides additional interest and intrinsic motivation  (Mayahayuddin & Mamat, 2019; Levski 2018). 

 

REFERENCES

Foote, C. (2018).  Is it real or is it VR? Exploring AR and VR tools. Computers in Libraries. Retrieved from http://web.b.ebscohost.com.ezproxy.csu.edu.au/ehost/pdfviewer/pdfviewer?vid=0&sid=6093ea4d-06fa-42b1-8400-75e5bd1dd875%40pdc-v-sessmgr03

Furio, D., Fleck, S., Bousquet, B., Guillet, JP., Canioni, L., & Hachet, M. (2017). HOBIT: Hybrid optical bench for innovative teaching. CHI’17 – Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Retrieved from https://hal.inria.fr/hal-01455510/file/HOBIT_CHI2017_authors.pdf

Levski, Y. (2018). 10 Augmented Reality Books That Will Blow Your Kid’s Mind. AppReal- VR [Blog]. Retrieved from https://appreal-vr.com/blog/10-best-augmented-reality-books/

Mahayuddin, Z., & Mamat, Z. (2019). Implementing augmented reality (AR) on phonics based literacy among children with autism. International Journal on Advanced Science Engineering Information Technology 9 (6). Retrieved from https://core.ac.uk/download/pdf/296918932.pdf

Oddone, K. (2019). Even better than the real thing? Virtual and augmented reality in the school library. SCIS Connections. (110). Retrieved from https://www.scisdata.com/media/1921/scis-connections-110.pdf

Saidin, N. Abd Halim, N., & Yahaya, N. (2015). A review of research on augmented reality in education: Advantages and applications. International Education Studies, 8(13). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.730.8456&rep=rep1&type=pd

Rafiq, K., & Hashim, H. (2018) Augmented reality game (ARG), 21st century skills and ESL classroom. Journal o fEducational and Learning Studies. 1 (1) pp29-34. Retrieved from https://journal.redwhitepress.com/index.php/jels/article/view/23/pdf

Riva, G., Banos, R., Botella, C., Mantovani, F., & Gaggioli, A. (2016). Transforming experience: The potential of augmented reality and virtual reality for enhancing personal and clinical change. Frontiers in Psychiatry 7. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5043228/pdf/fpsyt-07-00164.pdf

Wu, H., Lee, S., Chang, H., & Liang, J. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & Education, 62. Pp41-49. Retrieved from https://doi.org/10.1016/j.compedu.2012.10.024

Zak, E. (2014). Do you believe in magic? Exploring the conceptualisation of augmented reality and its implication for the user in the field of library and information science.  Information Technology and Libraries

 

Augmented Reality in the classroom – Part 2

AR APPLICATIONS IN CLASSROOMS – Part 2 

The interactive and innovative nature of technology has often been cited as a positive influence on educational outcomes, and this benefit extends to the inclusion of AR in schooling (Oddone, 2019).   AR can be used to improve student engagement, address curriculum outcomes and increase digital literacy skills (Oddone, 2019; Saidin, Abd Hali & Yahaya, 2015).   It can be used in inquiry learning, recreational and informational reading, improving literacy and numeracy standards, developing STEM and ICT skills, supporting literary arts, visual arts and developing social emotional learning (Saidin, Abd Hali & Yahaya, 2015).  Like VR, AR expands learning beyond the textbook and classroom walls, as well as builds those critical digital literacy skills for life beyond the classroom (Wolz, 2019, p.3; Wu et al., 2014). 

The most sizable and unique benefit AR has on educational practices is that it uses 3D images to illustrate complex concepts to students (Zak, 2014).  By creating these images, AR enables the student to feel a sense of immediacy and immersion which fosters a realistic experience (Wu et al., 2013, p.44).  This realistic experience increases the frequency and depth of connections made between the student, the content and the real world (Hannah, Huber & Matei, 2019, p.278; Wu et al., 2013).  AR requires the user to activate the augmented data, therefore it can be described as student centred, contextual to the user and is a constructivist approach to education, and consequently aligns itself along the current prevalent pedagogical theories (Wolz, 2019, p.2; Zak, 2014).   Hence, when combined with holistic and authentic learning practices, AR has an immense capability to inspire affective learning. 

REFERENCES

Hannah, M., Huber, S., & Matei, S. (2019). Collecting virtual and augmented reality in the twenty first century library. Collection Management, 44 (2-4), pp.277-295. DOI: 10.1080/01462679.2019.1587673

Oddone, K. (2019). Even better than the real thing? Virtual and augmented reality in the school library. SCIS Connections. (110). Retrieved from https://www.scisdata.com/media/1921/scis-connections-110.pdf

Saidin, N. Abd Halim, N., & Yahaya, N. (2015). A review of research on augmented reality in education: Advantages and applications. International Education Studies, 8(13). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.730.8456&rep=rep1&type=pdf

Wolz, K. (2019). Building faculty competence and self efficacy for using ZSpace virtual reality (VR) software in the classroom. All Regis University Theses. Retrieved from https://epublications.regis.edu/cgi/viewcontent.cgi?article=1930&context=theses

Wu, H., Lee, S., Chang, H., & Liang, J. (2013). Current status, opportunities and challenges of augmented realiy in education. Computers & Education, 62. Pp41-49. Retrieved from https://doi.org/10.1016/j.compedu.2012.10.024

Zak, E. (2014). Do you believe in magic? Exploring the conceptualisation of augmented reality and its implication for the user in the field of library and information science.  Information Technology and Libraries.

Augmented Reality in the classroom- Part 1

zedinteractive / Pixabay

The technology revolution, pervasive use of the internet and plethora of personal devices have changed the way society engages in employment, recreation, education and personal endeavours.

Educators need to keep abreast of emerging technologies so that they can ensure students possess the necessary digital skills and strategies to thrive in the 21st century  (Wolz, 2019).  Emanating software such as augmented and virtual reality are being trialed by many teachers seeking methods in which to improve engagement, bolster ICT acuity and meet the needs of the modern student.  This article seeks to define AR, identify its role in pedagogical practice, role in meeting curriculum outcomes, and inferences of future applications.  

WHAT IS AR 

Augmented reality (AR) is when a computer generated layer of information is placed over a person’s experience of the world (Townsdin & Whitmer, 2017; Oddone, 2019).  Wu, Lee, Chang & Liang (2013) define AR as technology that uses accurate 3D visual representations to combine real with virtual worlds.  Generally viewed using mobile device applications or wearable computers, AR displays the augmented media in the form of images, sounds, videos, graphics or GPS data (Townsdin & Whitmer, 2017; Wu et al. 2013). At this point, AR is already in use within military machinery, theatre, flight navigation, entertainment industry and various mobile applications, i.e. Pokemon Go (Pope, 2018a; Townsdin & Whitmer, 2017).  There are two forms of AR.  The first  form is when an interaction is stimulated between an image and a smart device, and the second is when the GPS triggers the digital information over the user’s location (Oddone, 2019, p.3).  Whereas virtual reality (VR) is when a user is completely immersed into an artificial world with the aid of technology (Oddone, 2019).  This technology has the ability to flood the senses and trick the mind into believing that the user is actually experiencing the event.  

AR resources are activated by an application that ‘reads’ a QR code, image or illustration so that the interactive content is released.   Levski (2018) points out that this added material could be as simple as a hidden photo or video, but could also be animated sequences or even an embedded game.  The addition of these interactive elements is based upon the gamification principle, which relies on positive feedback to keep students motivated.  By supporting interaction between the real and virtual world, AR allows the user to actively manipulate a tangible interface and thus increase the learner engagement and boost information retention (Saidin, Abd Hali & Yahaya, 2015; Wolz, 2019).  This interaction means that AR is self paced, promotes independent learning and allows students to progress at their own cognitive capabilities.  There is great potential for AR in educational practices, it can be embedded into print or digital resources, used across disciplines, and its multimodal nature gives diverse learners multiple entry points into the content (Levski, 2018).  

References:

Levski, Y. (2018). 10 Augmented Reality Books That Will Blow Your Kid’s Mind. AppReal- VR [Blog]. Retrieved from https://appreal-vr.com/blog/10-best-augmented-reality-books/

Oddone, K. (2019). Even better than the real thing? Virtual and augmented reality in the school library. SCIS Connections. (110). Retrieved from https://www.scisdata.com/media/1921/scis-connections-110.pdf

Pope, H. (2018a). Virtual and augmented reality in libraries. Library Technology Reports – American Library Association, (54)6.

Saidin, N. Abd Halim, N., & Yahaya, N. (2015). A review of research on augmented reality in education: Advantages and applications. International Education Studies, 8(13). Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.730.8456&rep=rep1&type=pdf

Townsdin, S., & Whitmer, W. (2017). Technology. Public Services Quarterly. 13. Pp190-199. DOI: 10.1080/15228959.2017.1338541

Wolz, K. (2019). Building faculty competence and self efficacy for using ZSpace virtual reality (VR) software in the classroom. All Regis University Theses. Retrieved from https://epublications.regis.edu/cgi/viewcontent.cgi?article=1930&context=theses

Wu, H., Lee, S., Chang, H., & Liang, J. (2013). Current status, opportunities and challenges of augmented realiy in education. Computers & Education, 62. Pp41-49. Retrieved from https://doi.org/10.1016/j.compedu.2012.10.024