The impact of sorghum phenolic compounds on risk factors of cardiovascular disease (CVD)

Primary Supervisor: Dr Boris Budiono & A/Prof Abishek Santhakumar
Location: Wagga Wagga
Keywords:  cardiovascular disease, ischaemia reperfusion injury, mitochondrial dynamics, antioxidants, polyphenols
Research Group:  Food as Medicine (FAM) Research Group

Cardiovascular disease (CVD) remains the leading cause of global mortality, largely driven by modifiable factors such as diet and exercise. Integrating bioactive-rich cereal grains into the diet is an emerging strategy to support cardiovascular health.

Sorghum (Sorghum bicolor L. Moench) is a climate-resilient staple in Africa and Asia that promotes food security. While its general health benefits are well documented, its role in reducing CVD risk—especially in protecting against ischemia-reperfusion injury, preserving cardiac mitochondrial function, and maintaining endothelial integrity—remains underexplored. Moreover, the influence of sorghum on neutrophil extracellular traps, key mediators in CVD progression, is not yet fully understood.

This study will fill these gaps by examining how sorghum-derived phenolic compounds impact CVD risk factors. Polyphenols will be extracted from whole grain sorghum and identified using UHPLC-Online ABTS and LC-MS/QTOF. In vitro models will assess their effects on molecular pathways linked to cardiovascular health using transcriptomic and proteomic techniques.

Findings will support the therapeutic potential of sorghum, expand its agricultural value, and drive innovation in heart-protective functional foods.

Interested? Start the conversation here by contacting Dr Boris Budiono

Development of Synthetic Carbohydrate Biomimetics as Urinary Tract Infection (UTI) Prophylactics

Primary Supervisor: Dr David Leaver
Co-supervisors: Dr. Doaa Hanafy
Location: Wagga Wagga
Keywords: UTI, carbohydrates, biomimetics
Study Availability: Available until December 2027
Research Group: Medical Sciences

Synopsis:
Urinary tract infections (UTIs) are caused by gram-negative uropathogenic Escherichia coli (UPEC) and present a significant health burden for women with approximately 20 million cases reported annually. Approximately 20-40% of women treated with antibiotics will have at least one recurrence within 6 months of initial diagnosis which results in a loss of 2 billion dollars per year in the US alone. The main goal of this project is to develop novel antagonists of the mannose-binding type I pilus adhesin FimH, which is required to colonize the bladder epithelium during UTIs.

Interested? Start the conversation here by contacting Dr David Leaver

Step 1 of 2
Please sign in first
You are on your way to create a site.