Optimising Resistant Starch Formation in Different Rice Varieties Under Various Processing Conditions

Primary Supervisor: Dr Boris Budiono
Co-Supervisors: Dr Nidhish Francis & Prof. Chris Blanchard
Location: Wagga Wagga
Keywords: functional foods, nutrition, food science, glycaemic index, diabetes
Research Group: Food as Medicine (FAM) Research Group

Synopsis:
Resistant starch (RS) is a form of starch that escapes digestion in the small intestine and reaches the colon, where it is fermented by gut microbiota into beneficial short-chain fatty acids such as butyrate. Increased RS intake is associated with improved glycaemic control, enhanced gut health, and potential protection against metabolic disorders. Rice is a staple food globally, including in Australia, but its high glycaemic index makes it less suitable for individuals with insulin resistance or type 2 diabetes. Evidence shows that cooking, cooling, and reheating rice can increase RS content, yet the optimal processing conditions for different rice varieties (e.g., white, brown, basmati, jasmine) remain poorly understood.

Project Aim:This study aims to investigate how different cooking, cooling, and reheating conditions affect the resistant starch content of various rice varieties. The findings could inform dietary strategies to reduce postprandial glycaemic responses and promote healthier carbohydrate choices.

Project Objectives:

  • Compare the RS content of freshly cooked, cooled, and cooled–reheated rice across multiple rice varieties.
  • Test different cooling durations (e.g., 4 h, overnight, 24 h) and reheating methods (microwave, stovetop) to identify the most effective strategies for RS enhancement.
  • Analyse the impact of these conditions on predicted glycaemic index using in vitro starch digestibility assays.

Methods Overview: Students will cook standardised portions of different rice varieties under controlled conditions, then subject them to various cooling and reheating treatments. RS content will be measured using AOAC-approved enzymatic assays. Optionally, samples may also undergo simulated in vitro digestion to assess glucose release rates. Results will be statistically analysed to determine which combinations of rice variety and processing condition yield the highest RS levels.

Expected Outcomes: This project will generate practical recommendations for preparing rice with improved nutritional profiles. The results could support future public health messaging or functional food development aimed at lowering dietary glycaemic load and improving metabolic health

URL link to relevant journal articles or website: https://www.csu.edu.au/research/fgc

Interested? Start the conversation here by contacting Dr Boris Budiono

 

Innovative nutraceutical strategies for the management of diabetes

Primary Supervisor: Dr. Nidhish Francis
Location: Wagga Wagga
Keywords: diabetes, polyphenols, cell culture, oxidative stress
Research Group: Food As Medicine (FAM) research group

Synopsis: This research project focuses on investigating plant-derived bioactive compounds, particularly polyphenols, as potential therapeutic agents for diabetes management. Diabetes, a chronic metabolic disorder characterised by impaired glucose metabolism and insulin resistance, affects millions worldwide. Current pharmacological treatments primarily manage symptoms but fail to address underlying mechanisms or prevent disease progression. This project aims to explore the potential of plant-derived polyphenols to regulate key pathways involved in diabetes development and progression.

Polyphenols, naturally occurring antioxidants found in plant-based foods, have shown promise in mitigating oxidative stress, inflammation, and insulin resistance—key contributors to diabetes pathology. This study will utilise advanced in vitro cell culture models to evaluate the effects of polyphenols on glucose uptake, insulin signalling, and oxidative stress markers. Molecular techniques such as RT-PCR and Western blot analysis will be employed to investigate the modulation of genes and proteins involved in glucose metabolism and inflammatory pathways. The findings aim to contribute to the development of natural, plant-based strategies for diabetes management, offering a complementary approach to conventional therapies. This project is ideal for candidates passionate about medical science, clinical nutrition, and exploring innovative solutions for diabetes care.

URL link to relevant journal articles or website: https://scholar.google.com.au/citations?hl=en&user=o6d7fCMAAAAJ

Interested? Start the conversation here by contacting Dr. Nidhish Francis

Step 1 of 2
Please sign in first
You are on your way to create a site.